Current Diagnosis and Management of Primary Sclerosing Cholangitis

Jens J. W. Tischendorf, Andreas Geier, and Christian Trautwein
Medical Department III (Gastroenterology, Hepatology, and Metabolic Diseases), University Hospital Aachen, Aachen, Germany

Primary sclerosing cholangitis (PSC) is an important liver disease with major morbidity and mortality. The diagnosis of PSC is confirmed by magnetic resonance cholangiopancreatography, and endoscopic retrograde cholangiopancreatography is performed in patients needing therapeutic endoscopy. As a result of the unknown cause of the disease, current medical therapies are unsatisfactory. Nevertheless, high-dose ursodeoxycholic acid should be recommended for treatment of PSC patients because there is a trend toward increased survival. Dominant bile duct stenoses should be treated endoscopically. However, liver transplantation continues to be the only therapeutic option for patients with advanced disease. Estimation of prognosis and timing of liver transplantation should be determined individually for each PSC patient on the basis of all results. The diagnosis and treatment of cholangiocarcinoma (CC) still remain a challenge in PSC patients. Early diagnosis of CC certainly is a prerequisite for successful treatment with surgical resection or innovative strategies such as neoadjuvant radiochemotherapy with subsequent orthotopic liver transplantation. Therefore, endoscopic techniques such as cholangioscopy and/or intraductal ultrasound may be useful diagnostic tools in patients with stenoses suspicious for malignancy. Liver Transpl 14:735-746, 2008. © 2008 AASLD.

Received November 8, 2007; accepted January 16, 2008.

Primary sclerosing cholangitis (PSC), first described by Hoffmann in 1867,1 is a chronic cholestatic liver disease characterized by inflammation and periductal fibrosis of the intrahepatic and/or extrahepatic bile ducts. The concept of PSC as a generalized disorder of both the intrahepatic and extrahepatic biliary tract and the gallbladder was first introduced in 1967 by Thorpe and coworkers.2 Although the clinical course is very variable, progressive obliteration of the biliary tree leads to biliary cirrhosis and its complications in a significant proportion of patients.3-5 The most dismal sequel of PSC is the occurrence of hepatobiliary carcinomas, especially cholangiocarcinoma (CC) in 6%-20% of patients.6-11 Additionally, PSC is closely linked to inflammatory bowel disease (IBD), particularly ulcerative colitis, which is found in approximately two-thirds of patients with PSC.5,8,9,12 The cause of PSC is unknown. Although often associated with autoantibodies, PSC is not a typical autoimmune disease and responds poorly to immunosuppressive therapies, if at all. In children, however, the clinical course and treatment of PSC might be different; in particular, the overlap of PSC with autoimmune hepatitis is more often found in children than in adults.13-15 Currently, liver transplantation remains the only life-extending treatment option for patients with end-stage PSC.16 Consequently, PSC has become one of the most common causes of chronic liver disease leading to orthotopic liver transplantation (OLT).17,18

The present review addresses recent aspects of PSC in adults and focuses on diagnosis and management.

EPIDEMIOLOGY AND ETIOPATHOGENESIS

Because high-quality epidemiologic studies are difficult to conduct, only 2 population-based epidemiologic
studies from Norway and the United States have been published to date. The mean annual incidence rates were between 0.9 and 1.3 cases per 100,000 persons, and the prevalence was between 8.5 and 13.6 cases per 100,000 persons. There is a strong 70% male predominance of affected individuals. The average age at diagnosis is in the fourth decade, but it can range from 1 to 90 years. Comparable data were found in an epidemiological study from the United Kingdom. Additional data on estimates of incidence and prevalence of PSC derive from tertiary academic centers and from extrapolations based on the strong association between PSC and IBD. However, the overall incidence and prevalence of PSC in Spain, Asia, and Alaska were much lower than those observed in the United States, United Kingdom, and Norway, and this might indicate geographical variations. The frequency of PSC in Africa is unknown.

The association between PSC and IBD is well established. Among European and North America populations, an estimated 63% to 90% of PSC patients develop IBD. In contrast, IBD is found in 54% or less of PSC patients in Spain, Italy, and India and in only 20% of patients with PSC in Asian countries. The prevalence of PSC in patients with IBD has been reported widely and ranges from 2.4% to 7.5%.

PSC is most likely a multifactorial disease, but the exact etiopathology remains unknown so far. However, immunopathogenetic mechanisms are likely involved because an association with human leukocyte antigen (HLA) complex haplotypes, multiple autoantibodies, and the presence of IBD is found in more than 80% of PSC patients. A genetic predisposition is shown by the 100-fold increased risk of PSC among siblings. Correspondingly, an increased prevalence of HLA class I A1 as well as HLA class II B8 and DR3 is observed in PSC patients. Rapid disease progression in the presence of DR4 has been described but has subsequently been discussed rather controversially. A number of non-major histocompatibility class candidate genes may also influence susceptibility or resistance to clinical disease from PSC, such as matrix metalloproteinase-3, tumor necrosis factor α, and certain cystic fibrosis transmembrane conductance regulator mutations. Recently, a “toxic bile” hypothesis has been derived from the PSC-like phenotype in phospholipid flippase Mdr2-deficient mice, indicating that defective biliary phospholipid secretion may cause progressive cholangiocyte injury. However, neither of 2 recent studies in PSC patients found an increase in MDR3 haplotype distribution in humans. Additionally, PSC seems to be a T-helper 1 proinflammatory cytokine-driven disease. Tumor necrosis factor α and interferon-γ stimulate the biliary epithelium to generate nitric oxide via nitric oxide synthase induction, which in turn causes ductular cholestasis. Nitric oxide synthase expression is significantly increased in the biliary epithelium of PSC patients. On the other hand, there are several features that distinguish PSC from a classical autoimmune disease, such as male predilection, poor response to immunosuppressive therapy, and the absence of disease-specific autoantibodies. Perinuclear, anti-neutrophil cytoplasmatic antibodies were found in up to 88% of PSC patients but did not prove to be specific for this disease. The presence of perinuclear, anti-neutrophil cytoplasmatic antibodies is considered to be an epiphenomenon rather than a finding of primary pathogenetic importance.

CLINICAL PRESENTATION AND DIAGNOSIS

The major diagnostic criteria for PSC are cholangiographic findings of multifocal strictures and beading of the intrahepatic and/or extrahepatic bile ducts with compatible cholestatic biochemical abnormalities after exclusion of secondary causes. Currently, up to 45% of PSC patients have been asymptomatic until diagnosis because these cases are defined when a structural biliary abnormality is identified. Thus, there may be many more unidentified PSC cases in IBD patients who have never had a cholangiogram or a liver biopsy. This is one of the reasons that diagnosis of PSC is made with a mean delay of 4 years from the first presentation of biochemical abnormalities consistent with PSC. However, the majority of PSC patients present with symptoms such as abdominal pain, pruritus, jaundice, fatigue, weight loss, and fever; abdominal pain in the right upper quadrant is the most prevalent symptom. The physical examination is usually unremarkable in early stages. If positive, it may disclose hepatomegaly (45%), splenomegaly (30%), skin hyperpigmentation (25%), excoriations (20%), or ascites (1%). Over the past 2 decades, changes in the clinical presentation of PSC patients have been observed, with significantly older age at diagnosis, fewer symptoms at diagnosis, and a lower frequency of coexisting IBD. In a significant proportion of PSC patients, osteopenia is a common complication and seems to be correlated with the stage of the liver disease. Although disease-specific laboratory changes do not exist, a cholestatic biochemical profile is frequently found in PSC patients. Elevation of alkaline phosphatase and/or γ-glutamyl transpeptidase occurs in nearly 100% of cases, and a mild to moderate elevation of aminotransferase levels also is usually present. Serum bilirubin levels are normal in 60% of individuals at diagnosis. Bilirubin levels fluctuate spontaneously over time, but elevation longer than 3 months may indicate advanced disease or CC. At the time of diagnosis, PSC typically involves both intrahepatic and extrahepatic bile ducts in 69% of patients but is less often restricted to the intrahepatic (25%) or extrahepatic bile ducts (4%) only. A dominant bile duct stenosis is present in up to 35% of patients. An unremarkable cholangiogram is seen in 2% of all patients with typical biochemical and histological features of PSC, and this disease subentity is termed “small-duct PSC”. Bilirubin levels fluctuate spontaneously over time, but elevation longer than 3 months may indicate advanced disease or CC. At the time of diagnosis, PSC typically involves both intrahepatic and extrahepatic bile ducts in 69% of patients but is less often restricted to the intrahepatic (25%) or extrahepatic bile ducts (4%) only. A dominant bile duct stenosis is present in up to 35% of patients. An unremarkable cholangiogram is seen in 2% of all patients with typical biochemical and histological features of PSC, and this disease subentity is termed “small-duct PSC”. Bilirubin levels fluctuate spontaneously over time, but elevation longer than 3 months may indicate advanced disease or CC. At the time of diagnosis, PSC typically involves both intrahepatic and extrahepatic bile ducts in 69% of patients but is less often restricted to the intrahepatic (25%) or extrahepatic bile ducts (4%) only. A dominant bile duct stenosis is present in up to 35% of patients. An unremarkable cholangiogram is seen in 2% of all patients with typical biochemical and histological features of PSC, and this disease subentity is termed “small-duct PSC”.
cently, another new disease entity has been described in the literature and named immunoglobulin G4–asso-
ciated cholangitis; it is characterized as a steroid-re-
sponsive biliary disease.62-64 This entity might repre-
sent a distinct subtype of PSC.

Cholangiography, preferably endoscopic retrograde 
cholangiopancreaticography (ERCP), has been the gold 
standard for visualization of the biliary tract in PSC 
patients for over 2 decades. Recently, mainly because it 
is less invasive, magnetic resonance cholangiopancre-
aticography (MRCP) has gained priority for diagnosing 
PSC. In a prospective comparative study, MRCP had an 
overall diagnostic accuracy of 90% in detecting the bil-
ary disease versus 97% for ERCP or percutaneous 
cholangiography.65 In more recent studies, it could be 
confirmed that ERCP and MRCP perform equally well in 
the diagnosis of PSC.66,67 In contrast to ERCP, MRCP 
provides imaging of the bile ducts proximal to ob-
structed areas and the extraluminal abdomen as im-
portant additive information. Therefore, in routine 
cases, initial MRCP is a widely used screening test for 
PSC and currently represents the most cost-effective 
approach.68,69 However, ERCP should remain the final 
arbiter if any confirmation of diagnosis is needed. In 
patients who are likely to benefit from a therapeutic 
intervention, ERCP should follow MRCP for definite 
treatment. Alternatively, primary ERCP in these pa-
tients with a high likelihood of intervention is still under 
debate. Meanwhile, liver biopsy is needed only to diag-
nose small-duct PSC or to exclude other diseases such 
as overlapping autoimmune hepatitis, which is associ-
ated with PSC in 1.4%-8% (Fig. 1).5,70-72 Besides liver 
biopsy, transient elastography turns out to be a nonin-
vasive technique for assessing the biliary fibrosis stage 
in the future.73

CHOLANGIOCARCINOMA (CC)
The most dismal sequel of PSC is the development of CC 
in 8%-14% of patients.8-11 A few earlier studies re-
ported CC to be a late complication of end-stage 
PSC,6,74 whereas more recent studies reported the de-
velopment of CC after a relatively short duration of PSC 
and in the absence of liver cirrhosis.11,75,76 Smoking, 
alcohol consumption, concomitant colorectal neopla-
sia, and a long history of IBD have been identified as 
risk factors for developing CC in PSC patients.75,77-79 
Rapid clinical deterioration with jaundice, weight loss 
associated with an appreciable rise in serum bilirubin, 
and abdominal discomfort were considered indicators 
for CC.7,78,80 Additionally, monitoring of the tumor 
marker carbohydrate antigen 19-9 in serum was de-
scribed to indicate CC development in PSC patients; 
however, given the relatively low sensitivity of this 
marker, its suitability for cancer screening is discussed 
controversially.81,82

Ultrasonography, computed tomography scanning, 
and MRCP have inadequate sensitivity to distinguish 
CC from benign stenoses in PSC.83 In 2 studies from 
Denmark and Sweden, positron emission tomography 
was reported to detect also small CC with a high accu-
racity, but in another recent study from Belgium, these 
results could not be confirmed.84-86 Endoscopic brush 
cytology with specificity in the range of 89%-100% for 
malignancy and a sensitivity of only 69%-75% has sub-
stantial limitations.87-89 Biliary fluorescence in situ hy-
bridization and digital image analysis are more sensi-
tive and virtually as specific as standard cytology for the 
detection of bile duct malignancies and may be incor-
porated into cytological evaluations in the future.90-92

Recently, 2 prospective studies demonstrated that transpapillary cholangioscopy and intraductal ultra-

Figure 1. Diagnostic algorithm in patients with a cholestatic biochemical profile and suspicion for PSC. Abdominal ultrasound 
represents the first step in the diagnostic algorithm. Because it is less invasive, MRCP is primarily used for diagnosing PSC in 
standard patients without dilated bile ducts, whereas ERCP is preferred if dilated bile ducts demonstrate a need for direct 
intervention. In patients with unremarkable cholangiogram, liver biopsy may detect “small-duct PSC.” Abbreviations: ERCP, 
endoscopic retrograde cholangiopancreatography; MRCP, magnetic resonance cholangiopancreatography; PSC, primary sclerosing cholangitis.
sound significantly contribute to the discrimination of malignant bile duct stenoses from benign ones.93,94 Nevertheless, the demanding task of an early diagnosis of CC is still unsolved. Unfortunately, in the majority of PSC patients, CC is still detected at an advanced stage, and this leaves open only palliative therapy with survival rarely beyond 1 year.11 Besides fluorouracil-based, platin-based, or gemcitabine-based chemotherapy with limited remission rates, these palliative approaches include biliary stenting and photodynamic therapy, which provide symptom relief and may improve survival, as recently reported for photodynamic therapy.95-97 Surgical resection of CC is a therapeutic option only in limited tumor stages with reported 5-year survival rates of about 30%.98,99 In PSC patients with nonmetastatic and limited CC (for example, according to the Mayo criteria), liver transplantation following radiochemotherapy is a very promising treatment option in experienced centers.100-102 An algorithm of therapeutic options in PSC patients with CC is illustrated in Fig. 2.

**NATURAL HISTORY AND PROGNOSIS**

PSC is a disease with a variable clinical course, but spontaneous resolution does not occur. Progressive obliteration of the biliary tree leads to biliary cirrhosis and its complications such as portal hypertension and liver failure.5,103 Therefore, a wide spectrum of disease severity exists, ranging from patients who present with advanced liver disease requiring liver transplantation within a short time to those who remain asymptomatic for decades. In addition to the interindividual variability in the rate of progression, the development of CC, which may occur at any time, determines the natural course of PSC. Median survival from time of diagnosis to death or liver transplantation is estimated to be between 9 and 18 years and increases to 26 years if only death is used as a single endpoint.5,8-10,12,26 Asymptomatic patients have a significantly better prognosis than those with symptoms, but up to 17% of asymptomatic patients present with cirrhosis on liver biopsy at the time of diagnosis.12,28 Even for those patients, the estimated survival rate without liver failure is 75% at 7 years versus 96% for comparable age-matched and sex-matched healthy individuals.53 In 3 studies with extended follow-up, higher survival rates have also been demonstrated in patients with small-duct PSC compared to patients with classical PSC, and no development of CC was found. Some patients, however, progress to classic PSC and/or end-stage liver disease with consequent necessity of OLT.59-61

On the basis of clinical variables proven to correlate independently with prognosis, predicting survival is of great importance for defining a strategy of therapy and for timing OLT. Thus, many prognostic models and risk scores have been constructed (Table 1). Most of the models include age and serum bilirubin. Kim and co-workers104 developed the revised Mayo score on the basis of the course of disease in 486 PSC patients seen at 3 referral centers.104 In this score, the need for liver biopsy has been eliminated, and thus the most important drawback of previous models is avoided. However, the mainstay of diagnosis has been cholangiography, and therefore it seems obvious to develop predictors based on cholangiographic abnormalities. A recent study from the Netherlands demonstrated that a cholangiographic classification system reflects disease stage and has the potential to serve as a predictor in determining prognosis.10 In a more recent study with
273 PSC patients, consecutively, cholangiographic changes including the distribution of PSC manifestation as well as the presence of dominant bile duct stenosis were included together with other clinical parameters in a novel prognostic model (“PSC score”). Compared with the Model for End-Stage Liver Disease score, revised Mayo score, and Child-Pugh score, the PSC score has the highest concordance index. Nevertheless, the major limitation of all prognostic models is the inability to predict CC development.

MEDICAL THERAPY

Because the etiology and pathogenesis of PSC are still unknown, a specific therapy is difficult. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is conventionally recommended for patients with PSC. UDCA appears to exert a number of effects, all of which may be generally beneficial in chronic cholestasis: a choleretic effect by increasing bile flow, a direct cytoprotective effect, an indirect cytoprotective effect by displacement of the more hepatotoxic endogenous hydrophobic bile acids from the bile acid pool, an immunomodulatory effect, and down-regulation of apoptosis. Numerous studies have attempted to address the clinical efficacy of UDCA in PSC (Table 2). Beuers and coworkers performed the first randomized double-blind, placebo-controlled trial of UDCA in a dose of 13-15 mg/kg/day in a small study group and documented significant biochemical and histologic improvement. In a subsequent large randomized, placebo-controlled trial from the United States, UDCA therapy with the standard dose was also associated with improvements in serum liver abnormalities but had no effect on liver histology or liver transplant-free survival. However, biliary enrichment of UDCA increases with increasing doses and reaches a plateau at 22 to 25 mg/kg without an increase of toxic hydrophobic bile acids. Two pilot studies with high-dose UDCA (25-30 mg/kg/day) have reported substantial improvements in biochemical, cholangiographic, and histologic parameters. In light of these encouraging results, a European multicenter, placebo-controlled study was conducted with UDCA in a dose of 17 to 23 mg/kg/day for 5 years. A trend toward increased survival was observed in the UDCA-treated group (110 patients) compared with placebo (109 patients), but despite the relatively large number of patients recruited, the study was still insufficiently powered to produce a statistically significant result. In addition to the effects of UDCA on the biliary tract, 3 studies have investigated the role of UDCA in prevention of colonic neoplasia in PSC patients with IBD. Two of those found a significant reduction in the risk of colonic dysplasia, but the largest study addressing this issue failed to reach statistical significance. Thus, the role of UDCA in preventing CC remains to be determined.

On the basis of the hypothesis that PSC may have an immunological pathogenesis, corticosteroids and other immunosuppressants were used for treatment, but they did not result in a clinical benefit. The effectiveness of therapy with the combination of prednisone, azathioprine, and UDCA requires confirmation. Pilot studies have been performed on a range of other drugs with effects on the immune system (cladribine, pentoxifylline, and etanercept) or other targets (nicotine, pirfenidone, D-penicillamine, and colchicine), but no improvement in clinical outcome has been observed. A significant improvement of liver enzymes by the administration of silymarin could be demonstrated in a recent pilot study, but this effect needs to be confirmed in a controlled trial.

Reductions in bone density and vitamin deficiency should be monitored during treatment of PSC patients. Supplementation with calcium and fat-soluble vitamins is appropriate, particularly in patients with advanced disease. Pruritus is frequently observed, but treatment is sometimes difficult. Medical treatment options include, among others, cholestyramine, seroto-

---

**TABLE 1. Variables Used in Selected Prognostic Models for Primary Sclerosing Cholangitis**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bilirubin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ASAT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Hemoglobin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>IBD</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Variceal bleeding</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Hepatomegaly</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Splenomegaly</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Histologic stage</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Cholangiographic stage</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

**Abbreviations:** AP, alkaline phosphatase; ASAT, aspartate aminotransferase; IBD, inflammatory bowel disease.
nin, and opioid receptor antagonists as well as rifampicin.\textsuperscript{137-140}

**ENDOSCOPIC TREATMENT**

During the natural course of PSC, many patients experience worsening of symptoms such as pruritus, abdominal pain, fever with chills, and jaundice due to impeded biliary drainage. In a portion of these patients, cholestasis is due to dominant stenoses that develop in up to 50% of PSC patients.\textsuperscript{141,142} Dominant biliary stenoses inhibit bile flow, increase biliary back pressure, and may lead to progressive deterioration of liver function. Most importantly, dominant bile duct strictures may cause bacterial cholangitis that further contributes to liver damage.\textsuperscript{143} During the past decade, several studies have shown that endoscopic therapy to maintain biliary tract patency can substantially improve both liver function tests and the clinical condition in PSC patients with dominant bile duct stenoses. First attempts to treat dominant stenoses endoscopically were made by intermittent stenting.\textsuperscript{144} The use of short-term stenting for dominant strictures is associated with an improvement in symptoms and liver biochemistry in a small number of patients.\textsuperscript{145,146} However, a frequent problem with this procedure is early occlusion of the endoprothesis predisposing to bacterial infection.\textsuperscript{143,147} Therefore, balloon dilatation has become the preferred endoscopic therapy. Actuarial survival was reported to be improved following balloon dilatation of biliary strictures among 106 patients.\textsuperscript{141} The same results were obtained by 2 other retrospective analyses.\textsuperscript{148,149} In most cases, however, a single dilatation is not sufficient because of restenosis, and repeated dilatations over the years are necessary until the bile duct remains open. Stenting after balloon dilatation does not result in an additional benefit.\textsuperscript{147} The important role of antibiotics in all PSC patients who undergo endoscopic procedures has been demonstrated.\textsuperscript{150} In all patients with dominant bile duct stenoses, extensive diagnostic efforts should be made in addition to endotherapy to exclude malignancy.\textsuperscript{93,94} It is noteworthy that, despite multiple studies claiming endotherapy to be efficacious in treating the signs and symptoms of PSC, there have been no prospective, placebo-controlled trials demonstrating efficacy of this strategy.

**ORTHOTOPIC LIVER TRANSPLANTATION (OLT)**

OLT is an effective therapy for PSC and the only lifesaving option for end-stage disease. PSC is the fifth most common indication for OLT in the United States, and in some areas, such as the Scandinavian countries, PSC is even the leading indication for OLT.\textsuperscript{17,18} Excellent long-term outcome has been reported with 5-year

---

**TABLE 2. Medical Therapies Evaluated in Patients with Primary Sclerosing Cholangitis**

<table>
<thead>
<tr>
<th>Medication</th>
<th>Year</th>
<th>Number of Patients</th>
<th>Study Type</th>
<th>Symptoms Improved?</th>
<th>Liver Biochemistry Improved?</th>
<th>Liver Histology Improved?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDCA, 10 mg/kg/day</td>
<td>1991</td>
<td>12</td>
<td>Open label</td>
<td>Yes</td>
<td>Yes</td>
<td>n.a.</td>
<td>113</td>
</tr>
<tr>
<td>UDCA, 13–15 mg/kg/day</td>
<td>1992</td>
<td>6</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>107</td>
</tr>
<tr>
<td>UDCA, 750 mg/day</td>
<td>1994</td>
<td>20</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>114</td>
</tr>
<tr>
<td>UDCA, 600 mg/day</td>
<td>1996</td>
<td>59</td>
<td>DB, PC</td>
<td>n.a.</td>
<td>No</td>
<td>n.a.</td>
<td>115</td>
</tr>
<tr>
<td>UDCA, 13–15 mg/kg/day</td>
<td>1997</td>
<td>105</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>108</td>
</tr>
<tr>
<td>UDCA, 10 mg/kg/day</td>
<td>1998</td>
<td>48</td>
<td>DB</td>
<td>No</td>
<td>Yes</td>
<td>n.a.</td>
<td>116</td>
</tr>
<tr>
<td>UDCA, 20–25 mg/kg/day</td>
<td>2001</td>
<td>26</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>110</td>
</tr>
<tr>
<td>UDCA, 25–30 mg/kg/day</td>
<td>2001</td>
<td>30</td>
<td>Open label</td>
<td>n.a.</td>
<td>Yes</td>
<td>n.a.</td>
<td>111</td>
</tr>
<tr>
<td>UDCA, 8–13 mg/kg/day</td>
<td>2002</td>
<td>86</td>
<td>DB, PC</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>117</td>
</tr>
<tr>
<td>UDCA, 17–23 mg/kg/day</td>
<td>2005</td>
<td>110</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>n.a.</td>
<td>112</td>
</tr>
<tr>
<td>Penicillamine</td>
<td>1988</td>
<td>39</td>
<td>DB, PC</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>130</td>
</tr>
<tr>
<td>Colchicine, corticosteroids</td>
<td>1991</td>
<td>12</td>
<td>Open label</td>
<td>n.a.</td>
<td>No</td>
<td>No</td>
<td>133</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>1994</td>
<td>12</td>
<td>DB, PC</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>121</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>1995</td>
<td>10</td>
<td>Open label</td>
<td>n.a.</td>
<td>Yes</td>
<td>No</td>
<td>122</td>
</tr>
<tr>
<td>Colchicine</td>
<td>1995</td>
<td>44</td>
<td>DB, PC</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>131</td>
</tr>
<tr>
<td>Azathioprine, corticosteroids, UDCA</td>
<td>1999</td>
<td>15</td>
<td>Case series</td>
<td>n.a.</td>
<td>Yes</td>
<td>Yes</td>
<td>125</td>
</tr>
<tr>
<td>Nicotin</td>
<td>1999</td>
<td>8</td>
<td>Open label</td>
<td>No</td>
<td>No</td>
<td>n.a.</td>
<td>128</td>
</tr>
<tr>
<td>Pentoxifylline</td>
<td>2000</td>
<td>20</td>
<td>Open label</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>127</td>
</tr>
<tr>
<td>Budenoside</td>
<td>2000</td>
<td>21</td>
<td>Open label</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>134</td>
</tr>
<tr>
<td>Pirfenidone</td>
<td>2002</td>
<td>24</td>
<td>Open label</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>129</td>
</tr>
<tr>
<td>Etanercept</td>
<td>2004</td>
<td>10</td>
<td>Open label</td>
<td>Yes</td>
<td>No</td>
<td>n.a.</td>
<td>126</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
<td>2004</td>
<td>13</td>
<td>Randomized</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>123</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>2004</td>
<td>39</td>
<td>DB, PC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>135</td>
</tr>
<tr>
<td>Silymarine</td>
<td>2007</td>
<td>30</td>
<td>Open label</td>
<td>No</td>
<td>Yes</td>
<td>n.a.</td>
<td>132</td>
</tr>
</tbody>
</table>

**Abbreviations:** DB, double blind; n.a., not assessed; PC, placebo-controlled; UDCA, ursodeoxycholic acid.
patient survival rates of approximately 85%. However, retransplantation rates are higher for patients with PSC than for patients with other diagnoses (9.6% versus 4.9%). Predictors of retransplantation are either an episode of early rejection or vascular thrombosis.

Timing OLT in patients with PSC represents a particular problem, primarily because of the difficult prediction of the disease course as well as the increased and unpredictable risk of CC. According to recent studies, persistent elevation of serum bilirubin, cholangiographic findings, and rate of progression of the biliary changes might be the most reliable parameters for timing OLT. However, the decision to list a PSC patient for OLT should be made on the basis of all clinical signs, biochemical parameters, and cholangiographic findings. According to a study from Maheshwari and coworkers, there is no justification for performing pre-emptive OLT to reduce the potential risk for developing CC. Because of the high recurrence rates and a 5-year survival rate of only 5 to 35%, established CC is considered a contraindication for liver transplantation in most centers. On the other hand, innovative approaches using neoadjuvant radiochemotherapy with subsequent OLT achieve good results of outcome for highly selected patients with localized CC.

In the last years, increasing evidence has emerged that PSC recurs after OLT. The diagnosis of recurrent PSC is a challenge because biliary strictures in the allograft might be also caused by medications, infections, ischemia, chronic rejection, or anastomosis bile duct stricture. The recurrence rate is estimated to be between 5% and 37%, and the variation of frequency is explained by differences in the diagnostic criteria and duration of follow-up. To date, patient and graft survival do not appear to be negatively affected by disease recurrence in the intermediate term of follow-up.

The course of IBD following OLT is highly variable, but increased activity is observed in about 30% of patients, with some individuals requiring proctocolectomy for symptom control. Additionally, PSC patients with IBD have an increased risk for colorectal neoplasia, with some individuals requiring proctocolectomy, but increased activity is observed in about 30% of patients. Therefore, surveillance colonoscopy should be performed yearly following OLT.

**PERSPECTIVES**

Placebo-controlled studies on medical therapy, mainly UDCA, that have been conducted to date are insufficiently powered to produce statistically significant results. Similarly, despite multiple studies claiming endotherapy to be efficacious in treating bile duct stenoses of PSC patients, there have been no prospective, placebo-controlled trials demonstrating the efficacy of this widely pursued strategy, and they are urgently needed for the future. As another important issue for adequate treatment of PSC patients, early detection of CC and adequate patient selection for OLT will be challenging. Discrimination of CC from benign strictures using molecular techniques as well as standardization of eligibility criteria and extensive neoadjuvant treatment protocols before transplantation will greatly affect the prognosis of PSC patients after CC development. Finally, future insights into the etiopathogenesis of the disease may bring up new targeted therapies in the new century that may improve patient survival without transplantation.

**REFERENCES**

15. Feldstein AE, Perrault J, El-Younsi M, Lindor KD, Freese DR, Angulo P. Primary sclerosing cholangitis in children:


LIVER TRANSPLANTATION.DOI 10.1002/lt. Published on behalf of the American Association for the Study of Liver Diseases


152. Brandsaeter B, Friman S, Broomé U, Isoniemi H, Olsson M, Bäckman L, et al. Outcome following liver transplantation for primary sclerosing cholangitis in the Nor-


